Concurrency with Async

Async provides different APIs and performance characteristics compared to threads, but many patterns are similar. Key differences:

  • Tasks are lightweight compared to OS threads
  • Fair vs unfair scheduling
  • Cooperative vs preemptive multitasking

Spawning Tasks

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        trpl::spawn_task(async {
            for i in 1..10 {
                println!("hi number {i} from the first task!");
                trpl::sleep(Duration::from_millis(500)).await;
            }
        });

        for i in 1..5 {
            println!("hi number {i} from the second task!");
            trpl::sleep(Duration::from_millis(500)).await;
        }
    });
}

Like thread::spawn, trpl::spawn_task runs code concurrently. Unlike threads:

  • Tasks run on the same thread (unless using a multi-threaded runtime)
  • Much lower overhead - millions of tasks are feasible
  • Terminated when the runtime shuts down

Joining Tasks

Tasks return join handles that implement Future:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let handle = trpl::spawn_task(async {
            for i in 1..10 {
                println!("hi number {i} from the first task!");
                trpl::sleep(Duration::from_millis(500)).await;
            }
        });

        for i in 1..5 {
            println!("hi number {i} from the second task!");
            trpl::sleep(Duration::from_millis(500)).await;
        }

        handle.await.unwrap();
    });
}

Joining Multiple Futures

trpl::join combines futures and waits for all to complete:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let fut1 = async {
            for i in 1..10 {
                println!("hi number {i} from the first task!");
                trpl::sleep(Duration::from_millis(500)).await;
            }
        };

        let fut2 = async {
            for i in 1..5 {
                println!("hi number {i} from the second task!");
                trpl::sleep(Duration::from_millis(500)).await;
            }
        };

        trpl::join(fut1, fut2).await;
    });
}

Key points about join:

  • Fair scheduling: alternates between futures equally
  • Deterministic ordering: consistent execution pattern
  • Structured concurrency: all futures complete before continuing

Compare this to threads where the OS scheduler determines execution order non-deterministically.

Message Passing

Async channels work similarly to sync channels but with async methods:

extern crate trpl; // required for mdbook test

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let val = String::from("hi");
        tx.send(val).unwrap();

        let received = rx.recv().await.unwrap();
        println!("Got: {received}");
    });
}

The recv method returns a Future that resolves when a message arrives.

Multiple Messages with Delays

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let vals = vec![
            String::from("hi"),
            String::from("from"),
            String::from("the"),
            String::from("future"),
        ];

        for val in vals {
            tx.send(val).unwrap();
            trpl::sleep(Duration::from_millis(500)).await;
        }

        while let Some(value) = rx.recv().await {
            println!("received '{value}'");
        }
    });
}

This runs serially - all sends complete before receives start. For concurrency, separate into different futures:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx_fut = async {
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_millis(500)).await;
            }
        };

        let rx_fut = async {
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        };

        trpl::join(tx_fut, rx_fut).await;
    });
}

Channel Cleanup

Channels need proper cleanup to avoid infinite loops. Move the sender into an async block so it gets dropped when sending completes:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx_fut = async move {
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_millis(500)).await;
            }
        };

        let rx_fut = async {
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        };

        trpl::join(tx_fut, rx_fut).await;
    });
}

The move keyword transfers ownership into the async block. When the block completes, tx is dropped, closing the channel.

Multiple Producers

Clone the sender for multiple producers:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx1 = tx.clone();
        let tx1_fut = async move {
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx1.send(val).unwrap();
                trpl::sleep(Duration::from_millis(500)).await;
            }
        };

        let rx_fut = async {
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        };

        let tx_fut = async move {
            let vals = vec![
                String::from("more"),
                String::from("messages"),
                String::from("for"),
                String::from("you"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_millis(1500)).await;
            }
        };

        trpl::join3(tx1_fut, tx_fut, rx_fut).await;
    });
}

Use trpl::join3 for three futures, or the join! macro for variable numbers.

Patterns Summary

Task Spawning: spawn_task for fire-and-forget concurrency Joining: join/join! for structured concurrency waiting on all futures Channels: Async message passing with trpl::channel Cleanup: Use async move to ensure proper resource cleanup