Working with Any Number of Futures

Variable-Arity Joins

The join! macro handles variable numbers of futures:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx1 = tx.clone();
        let tx1_fut = async move {
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx1.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let rx_fut = async {
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        };

        let tx_fut = async move {
            let vals = vec![
                String::from("more"),
                String::from("messages"),
                String::from("for"),
                String::from("you"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        trpl::join!(tx1_fut, tx_fut, rx_fut);
    });
}

For dynamic collections of futures, use join_all:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx1 = tx.clone();
        let tx1_fut = async move {
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx1.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let rx_fut = async {
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        };

        let tx_fut = async move {
            let vals = vec![
                String::from("more"),
                String::from("messages"),
                String::from("for"),
                String::from("you"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let futures = vec![tx1_fut, rx_fut, tx_fut];

        trpl::join_all(futures).await;
    });
}

Error: Each async block creates a unique anonymous type. Even identical blocks have different types.

Trait Objects for Dynamic Collections

Use trait objects to unify future types:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx1 = tx.clone();
        let tx1_fut = async move {
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx1.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let rx_fut = async {
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        };

        let tx_fut = async move {
            let vals = vec![
                String::from("more"),
                String::from("messages"),
                String::from("for"),
                String::from("you"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let futures =
            vec![Box::new(tx1_fut), Box::new(rx_fut), Box::new(tx_fut)];

        trpl::join_all(futures).await;
    });
}
extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx1 = tx.clone();
        let tx1_fut = async move {
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx1.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let rx_fut = async {
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        };

        let tx_fut = async move {
            let vals = vec![
                String::from("more"),
                String::from("messages"),
                String::from("for"),
                String::from("you"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let futures: Vec<Box<dyn Future<Output = ()>>> =
            vec![Box::new(tx1_fut), Box::new(rx_fut), Box::new(tx_fut)];

        trpl::join_all(futures).await;
    });
}

Pin Requirements: join_all requires futures to implement Unpin. Most async blocks don’t implement Unpin automatically.

Pinning Futures

Use Pin<Box<T>> to satisfy the Unpin requirement:

extern crate trpl; // required for mdbook test

use std::pin::Pin;

// -- snip --

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx1 = tx.clone();
        let tx1_fut = async move {
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx1.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let rx_fut = async {
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        };

        let tx_fut = async move {
            let vals = vec![
                String::from("more"),
                String::from("messages"),
                String::from("for"),
                String::from("you"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        };

        let futures: Vec<Pin<Box<dyn Future<Output = ()>>>> =
            vec![Box::pin(tx1_fut), Box::pin(rx_fut), Box::pin(tx_fut)];

        trpl::join_all(futures).await;
    });
}

Performance optimization: Use pin! macro to avoid heap allocation:

extern crate trpl; // required for mdbook test

use std::pin::{Pin, pin};

// -- snip --

use std::time::Duration;

fn main() {
    trpl::run(async {
        let (tx, mut rx) = trpl::channel();

        let tx1 = tx.clone();
        let tx1_fut = pin!(async move {
            // --snip--
            let vals = vec![
                String::from("hi"),
                String::from("from"),
                String::from("the"),
                String::from("future"),
            ];

            for val in vals {
                tx1.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        });

        let rx_fut = pin!(async {
            // --snip--
            while let Some(value) = rx.recv().await {
                println!("received '{value}'");
            }
        });

        let tx_fut = pin!(async move {
            // --snip--
            let vals = vec![
                String::from("more"),
                String::from("messages"),
                String::from("for"),
                String::from("you"),
            ];

            for val in vals {
                tx.send(val).unwrap();
                trpl::sleep(Duration::from_secs(1)).await;
            }
        });

        let futures: Vec<Pin<&mut dyn Future<Output = ()>>> =
            vec![tx1_fut, rx_fut, tx_fut];

        trpl::join_all(futures).await;
    });
}

Tradeoffs

Same types + dynamic count: Use join_all with trait objects and pinning Different types + known count: Use join! macro or specific join functions Performance: Stack pinning (pin!) vs heap allocation (Box::pin)

extern crate trpl; // required for mdbook test

fn main() {
    trpl::run(async {
        let a = async { 1u32 };
        let b = async { "Hello!" };
        let c = async { true };

        let (a_result, b_result, c_result) = trpl::join!(a, b, c);
        println!("{a_result}, {b_result}, {c_result}");
    });
}

The join! macro handles heterogeneous types but requires compile-time knowledge of count and types.

Racing Futures

race returns the first completed future, discarding others:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let slow = async {
            println!("'slow' started.");
            trpl::sleep(Duration::from_millis(100)).await;
            println!("'slow' finished.");
        };

        let fast = async {
            println!("'fast' started.");
            trpl::sleep(Duration::from_millis(50)).await;
            println!("'fast' finished.");
        };

        trpl::race(slow, fast).await;
    });
}

Key point: Futures only yield at await points. CPU-intensive work without await points will block other futures (cooperative multitasking).

Yielding Control

Force yield points with yield_now():

extern crate trpl; // required for mdbook test

use std::{thread, time::Duration};

fn main() {
    trpl::run(async {
        // We will call `slow` here later
    });
}

fn slow(name: &str, ms: u64) {
    thread::sleep(Duration::from_millis(ms));
    println!("'{name}' ran for {ms}ms");
}
extern crate trpl; // required for mdbook test

use std::{thread, time::Duration};

fn main() {
    trpl::run(async {
        let a = async {
            println!("'a' started.");
            slow("a", 30);
            slow("a", 10);
            slow("a", 20);
            trpl::sleep(Duration::from_millis(50)).await;
            println!("'a' finished.");
        };

        let b = async {
            println!("'b' started.");
            slow("b", 75);
            slow("b", 10);
            slow("b", 15);
            slow("b", 350);
            trpl::sleep(Duration::from_millis(50)).await;
            println!("'b' finished.");
        };

        trpl::race(a, b).await;
    });
}

fn slow(name: &str, ms: u64) {
    thread::sleep(Duration::from_millis(ms));
    println!("'{name}' ran for {ms}ms");
}
extern crate trpl; // required for mdbook test

use std::{thread, time::Duration};

fn main() {
    trpl::run(async {
        let one_ms = Duration::from_millis(1);

        let a = async {
            println!("'a' started.");
            slow("a", 30);
            trpl::sleep(one_ms).await;
            slow("a", 10);
            trpl::sleep(one_ms).await;
            slow("a", 20);
            trpl::sleep(one_ms).await;
            println!("'a' finished.");
        };

        let b = async {
            println!("'b' started.");
            slow("b", 75);
            trpl::sleep(one_ms).await;
            slow("b", 10);
            trpl::sleep(one_ms).await;
            slow("b", 15);
            trpl::sleep(one_ms).await;
            slow("b", 350);
            trpl::sleep(one_ms).await;
            println!("'b' finished.");
        };

        trpl::race(a, b).await;
    });
}

fn slow(name: &str, ms: u64) {
    thread::sleep(Duration::from_millis(ms));
    println!("'{name}' ran for {ms}ms");
}
extern crate trpl; // required for mdbook test

use std::{thread, time::Duration};

fn main() {
    trpl::run(async {
        let a = async {
            println!("'a' started.");
            slow("a", 30);
            trpl::yield_now().await;
            slow("a", 10);
            trpl::yield_now().await;
            slow("a", 20);
            trpl::yield_now().await;
            println!("'a' finished.");
        };

        let b = async {
            println!("'b' started.");
            slow("b", 75);
            trpl::yield_now().await;
            slow("b", 10);
            trpl::yield_now().await;
            slow("b", 15);
            trpl::yield_now().await;
            slow("b", 350);
            trpl::yield_now().await;
            println!("'b' finished.");
        };

        trpl::race(a, b).await;
    });
}

fn slow(name: &str, ms: u64) {
    thread::sleep(Duration::from_millis(ms));
    println!("'{name}' ran for {ms}ms");
}

Performance comparison: yield_now() is significantly faster than sleep() for cooperation points.

extern crate trpl; // required for mdbook test

use std::time::{Duration, Instant};

fn main() {
    trpl::run(async {
        let one_ns = Duration::from_nanos(1);
        let start = Instant::now();
        async {
            for _ in 1..1000 {
                trpl::sleep(one_ns).await;
            }
        }
        .await;
        let time = Instant::now() - start;
        println!(
            "'sleep' version finished after {} seconds.",
            time.as_secs_f32()
        );

        let start = Instant::now();
        async {
            for _ in 1..1000 {
                trpl::yield_now().await;
            }
        }
        .await;
        let time = Instant::now() - start;
        println!(
            "'yield' version finished after {} seconds.",
            time.as_secs_f32()
        );
    });
}

Building Async Abstractions

Compose futures to create higher-level abstractions:

extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let slow = async {
            trpl::sleep(Duration::from_millis(100)).await;
            "I finished!"
        };

        match timeout(slow, Duration::from_millis(10)).await {
            Ok(message) => println!("Succeeded with '{message}'"),
            Err(duration) => {
                println!("Failed after {} seconds", duration.as_secs())
            }
        }
    });
}
extern crate trpl; // required for mdbook test

use std::time::Duration;

fn main() {
    trpl::run(async {
        let slow = async {
            trpl::sleep(Duration::from_secs(5)).await;
            "Finally finished"
        };

        match timeout(slow, Duration::from_millis(10)).await {
            Ok(message) => println!("Succeeded with '{message}'"),
            Err(duration) => {
                println!("Failed after {} seconds", duration.as_secs())
            }
        }
    });
}

async fn timeout<F: Future>(
    future_to_try: F,
    max_time: Duration,
) -> Result<F::Output, Duration> {
    // Here is where our implementation will go!
}
extern crate trpl; // required for mdbook test

use std::time::Duration;

use trpl::Either;

// --snip--

fn main() {
    trpl::run(async {
        let slow = async {
            trpl::sleep(Duration::from_secs(5)).await;
            "Finally finished"
        };

        match timeout(slow, Duration::from_secs(2)).await {
            Ok(message) => println!("Succeeded with '{message}'"),
            Err(duration) => {
                println!("Failed after {} seconds", duration.as_secs())
            }
        }
    });
}

async fn timeout<F: Future>(
    future_to_try: F,
    max_time: Duration,
) -> Result<F::Output, Duration> {
    match trpl::race(future_to_try, trpl::sleep(max_time)).await {
        Either::Left(output) => Ok(output),
        Either::Right(_) => Err(max_time),
    }
}

Pattern: Use race to implement timeout logic. First argument gets priority due to non-fair scheduling.

Key Patterns

  • Dynamic collections: Trait objects + pinning for runtime-determined future sets
  • Static collections: join! macro for compile-time known futures
  • Cooperation: Insert yield_now() in CPU-intensive loops
  • Composition: Build complex async behavior from simpler primitives
  • Performance: Choose between stack (pin!) and heap (Box::pin) allocation